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Project Design 
For the structure of the robot, we are using ​polyvinyl chloride or PVC for short. For efficiency and                  
cost, we are using the ​1-inch solid core ​pipe version instead of sheet as it only requires drilling and                   
cutting. As our design is only intended to scare and chase with no harm to any animal, it is only                    
required to survive the environment. PVC is considerably lighter than most metal and more              
resistant to corrosion. It is rigid and durable and its pipe form can serve as covering for exposed                  
wires and devices. ​For the current prototype, the wires have been left outside the PVC for ease of                  
access during troubleshooting. 

 

Figure 1​: Diagram of chassis structure 

The Beaglebone Black is the microcontroller controlling the data flow of the robot ​and is               
contained within an enclosed environment​. This platform has both the functions required to             
collect data from the environment and meets the minimum memory needed to store or hold data                
collected from the environment. All of the following peripherals are connected to and extend the               
functionality of the BeagleBone Black. For environmental data collection, the Logitech C270            
webcam and Ultrasonic Distance Sensor are utilized. The camera is used to identify geese and               
hazardous objects, such as water or boulders, while the ultrasonic sensor is used to check the                
distance of objects in the robot’s surroundings. Validation of the robot’s position is provided by               
the Adafruit Breakout GPS module. This is the most compatible GPS for our microcontroller. For               
movement of the robot, we are using two 12V brushed, geared DC motors. There a three different                 
sources which provide power to the system. A 5VDC 2.1A li-ion battery pack provides power to the                 
Beaglebone. Power is supplied to the motors via a 12VDC 3A li-ion battery pack. The 5VDC pins                 
from one of the expansion headers on the Beaglebone power the GPS and ultrasonic sensor. 
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Figure 2​: Block diagram of peripheral component connections 

The software environment of the robot is relatively simple. Natively, the BeagleBone Black runs a               
distribution of Debian as its operating system. Debian, a ‘Unix-like OS’, provides a standardized              
framework for the rest of the robot’s software to run in. The robot’s mainloop is implemented in                 
Python. There are several Python libraries that expose the necessary low-level interfaces for             
configuration, operation, and monitoring of the various external components that are attached to             
the microcontroller. Interfacing with these components is straightforward thanks to the structure            
provided by Debian. Two software libraries, Tensorflow and OpenCV, are utilized for image             
processing. Tensorflow is useful for picture categorization and determining if certain objects are             
present within and image. The categorized image data from Tensorflow is fed into OpenCV.              
OpenCV allows the robot to determine where the identified objects are in relation to itself. This is                 
essential for accurate deployment of goose deterrence methods and safely avoiding hazardous            
objects. 
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Figure 3​: Block diagram of software environment 

 

Implementation Details 
Hardware 

The structural design of the PVC model is built with intentions to ease friction on movement.                
Constructing with the wheels placed left and right of the model allows complete, 360 degrees               
rotation not possible with 4 wheels. Additionally, the resistivity and durability of the PVC pipes               
allow us to place it in the front and back for balance and less friction on the environment when                   
rotating, backward, or forward movement. 

The Beaglebone uses several different methods for controlling the system’s peripherals. This is             
made possible via the two expansion headers and a USB header on the Beaglebone. The expansion                
headers consist of highly configurable General Purpose Input Output (GPIO) and several power             
and ground pins. This project used the expansion header pins for GPIO, Universal Asynchronous              
Receiver/Transmitter (UART), Pulse Width Modulation (PWM), and power/ground and the USB           
port to connect the camera. 

The ultrasonic sensor only needs two GPIO pins to control it. The sensor takes distance               
measurements by sending out pulses of ultrasonic waves and waiting for the waves to bounce off                
objects and return to the sensor. Consequently, one GPIO pin is used to trigger the distance                
measurement and the other is used to receive the echo signal coming back. Once the echo signal                 
is received, calculations by the Beaglebone determine if an object was detected and how far away                
it is. The Ultrasonic sensor has the capability to detect the distance between 2cm to 5 meters, the                  
sensor will stop measure distance once distance between object and sensor is less than 2 cm. The                 
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purpose of the sensor is to get a general idea about what object is on the way to object and how                     
far between object and sensor. The relationship between ultrasonic sensor and Beaglebone can be              
observed in ​Figure 4​. 

 
Figure 4​: Diagram of connection between Beaglebone and Ultrasonic Sensor 

The GPS is connected to the Beaglebone by a serial connection over UART as illustrated in ​Figure                 
5​. The Beaglebone transmits commands to the GPS to configure its functionality. The GPS is               
configured to work using WAAS, which greatly improves precision as well as accuracy. The GPS               
streams location data back to the Beaglebone which is then parsed, analyzed, and acted upon.               
When this data is sent to the Beaglebone, much of it is filtered out through a Python script, and                   
all that remains are longitude and latitude coordinates. 

 
Figure 5​: Diagram of connection between Beaglebone and GPS 
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A combination of GPIO and PWM signals are used to control the two DC motors through a motor                  
driver board. The GPIO pins are used to select which direction the motors should turn and if the                  
motors should brake. The PWM signals provide the actual power to the motor terminals and               
determine how fast the motors should spin. The Toshiba TB67H420FTG is the specific motor              
driver used on this prototype. The TB67H420FTG has two output channels that can provide 1.7A               
to each motor which is sufficient for the DC motors used. Changing the GPIO select signals                
changes whether the positive or negative line of each output channel is delivering the PWM.               
Applying the PWM to the positive terminal will cause the motor to spin forward and the negative                 
terminal will cause the motor to spin in reverse. The entire motor control system is diagrammed                
in ​figure​ ​6​. 

 
Figure 6​: Diagram of the motor control system on the robot 

Brushed DC motors were chosen to drive the robot because they are simple and inexpensive in                
comparison to brushless which makes brushed ideal for prototyping. A future design for this              
project may want to swap for brushless due to improved performance. The motors are also geared                
to a medium ratio, 1:100, to trade speed for more torque. The 1:100 gearing brings the motor’s RPM                  
down to 53. This gives us a theoretical robot speed of: 

otation Distance Wheel Circumference π in. 8.85in.R =  =  * 6 = 1  
peed PM  Rotation Distance 53  18.85 99.05 3.25S = R *  =  minute

rotations *  in.
rotation = 9 in.

minute = 8 feet
minute  

This is on the slow side but for the purposes of this prototype this speed is sufficient. Future                  
designs may want to increase the robot’s speed since it will be travelling long distances across golf                 
courses. 

The DC motors are physically connected to the wheel via an axle. The axle ends in a circular hub                   
which is bolted to the wheel’s central hub. This provides a secure connection between motor,               
axle, and wheel. A single bearing is used at the connection between the axle and the chassis to                  
take most of the robot’s weight. Without this bearing all of the robot’s weight would be on the                  
motor’s axle. The motor’s axle is not designed to have that big of a load on it and would likely                    
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break. Two shaft collars are used on either side of the bearing to prevent axial load on the motor                   
from the axle either getting pushed in or pulled out. 

 
Software 
There are three main parts to the software running on the Beaglebone: peripheral drivers, image               
processing, and the robot’s mainloop. The peripheral drivers, tensorflow model, and mainloop run             
in the Beaglebone’s Debian environment. 

The peripheral drivers follow a singleton or object oriented (OO) pattern. In embedded systems,              
it is easy to think of peripherals in terms of these patterns. Take the system’s camera for example.                  
There is a single camera on the system that can be instantiated so it is intuitive to think of the                    
camera like a singleton. If you need access to the camera’s functionality all that needs done is to                  
import the ‘camera’ module and call one of its methods (e.g. camera.capture()). For peripherals              
that could potentially have multiple instances on the system the singleton pattern will not work.               
This type of situation lends itself to an OO approach. A class defines the peripheral and its                 
functionality and each instantiation operates independently of the others. The DC motors on the              
system are a good example of where this pattern makes sense. Each motor is an instance of the                  
‘DCMotor’ class and can change speed independent of the other instance. Source code examples              
from this project of both of these patterns can be found in ​Appendix IV​. 

Regardless of a singleton or OO pattern, most of the peripheral drivers utilize dependency              
injection. Dependency injection is used to specify which pins on the Beaglebone the peripheral              
will utilize. This simplifies initializations as a whole and makes changing which peripherals use              
which pin easier. 

Tensorflow is instantiated in the main python file and opens the camera in an OpenCV session, as                 
well as loading a tensorflow model and its associated detection tags. Images are taken at most in                 
100 millisecond intervals. Converted to numpy arrays and resized to a 300x300 pixel resolution,              
and are fed into the tensorflow model. The output is then converted into a 2D array. The first                  
dimension being a list of detected objects, of which each is an array consisting of three parts in                  
order: the id of the identified object, the confidence value of that object, and lastly its bounding                 
box coordinates.  

Testing Process and Results 
Phase One Testing 
The first phase of testing for the project consisted of components testing. Testing the components 
individually before integrating them into the robot achieved two goals: 

1. Confirm compatibility of each individual component with the Beaglebone 
2. Test functionality of software controlling component 

 
The following are descriptions of how we tested each component and the results of that testing. 

DC Motor Testing 
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Process 

The plan to test the DC motor was to start on a set of motors smaller than what the final motors                     
would be to see if PWM control through a dual motor driver board would be acceptable. Once                 
this test was completed the full-scale motors and driver board would be tested. 

Result 

The small-scale test passed without problems. Control through a driver board was simple and              
accurate enough for this project. There were only a few changes needed to the software and the                 
wiring to make the full-scale parts operable. 

Stepper Motor Testing 

Process 

The stepper motor had required little testing. The plan was to simply hook up the driver board to                  
the Beaglebone and test how accurately it can change angle. 

Result 

The stepper motor functioned as expected. 

Camera, Tensorflow and OpenCV Testing 

Process 

Initial testing has largely been performed on computers with a USB webcam attached (of the same                
model used on the robot). Several architecture models were trained and tested. Initially, tests              
were carried out by feeding in a series of test images from our collection. Afterwards, with some                 
kinks worked out, testing moved on to live camera feed, also testing various models. This was                
often difficult, as different architectures have different means of outputting results, and so a lot of                
additional code had to be written and tested to account for these differences. 

Result 

The final model currently installed uses the SSD Mobilenet V1 architecture trained on the COCO               
image base. Oddly, retraining the model breaks visually representing live recognition with            
bounding boxes. However, its output tensors are still available, and code was able to be written to                 
extract all detection instances and their confidence scores. Bounding box coordinates are also             
extracted, but at this time are unused. 

Ultrasonic Sensor Testing 

Process 

The initial test was done by connecting the ultrasonic sensor to an Arduino. This was to make                 
sure the sensor itself worked properly. The next step was testing the sensor on the Beaglebone                
with Python code. 

Result 

The test with Arduino was successful, the sensor reflect the distance by meter. This test makes                
sure that the ultrasonic sensor do not have any hardware defect. Then test with Beaglebone by                
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Python code to obtain distance from 2cm to 5 m. and once the distance goes below 2cm the                  
measurement program would be terminated. 

GPS module Testing  

Process 

The GPS module was tested using the following protocol; After being connected to the              
Beaglebone board, and a proper Python program was developed, GPS location data was harvested              
from the module over the course of several minutes in a few distinct locations. This data was then                  
compared to the actual coordinates provided by Google maps.  

Result 

The test was successful, as the average GPS reading was determined to be within an acceptable                
radius of the actual location. The distance that was determined to be acceptable was a 10 foot                 
radius around the actual location. 

Phase Two Testing 

The second phase of testing for the project consisted of integration testing. All components were               
integrated onto the chassis and hooked into the Beaglebone. 

The following are the integration tests which we performed and the results of those tests: 

Movement Testing 

Process 

Once the motors and the control system are integrated onto the chassis the ability for the robot to                  
go forward, reverse, and turn by a certain angle would be tested.  

Result 

After testing and troubleshooting, the motors are unable to move the robot around. This could be                
due the motors being too weak to move the chassis, improper connection of the motor shaft to                 
the wheel axle, and/or bad wiring to the motor limiting the power provided to the motors. 

Navigation Testing 

Process 

Navigation would have been tested by creating a route for the robot to take via GPS coordinates,                 
uploading the coordinates onto the robot, and confirming that the robot followed the route with               
some margin of error. 

Result 

Navigation was not able to be tested. 

Safety Testing 

Process 

Test the system to make sure no functionality could cause harm to humans or the robot’s                
operating environment. These tests include ensuring the robot can recognize humans and would             
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never deploy tactics if a human was detected and verifying the robot cannot deviate from its set                 
route into prohibited or potentially dangerous areas, such as onto a neighboring road. 

Result 

The image processing software has been proven to recognize humans; however, we do not have               
any deterrence capabilities on the robot yet so that portion remains untested. Route verification              
was also not able to be tested. 

 

Related Products 
Goose Guardian 

http://www.gooseguardian.com/ 

This product has a very similar goal to ward off geese from properties. Technology-wise, it also                
utilizes a camera to identify geese. Upon detection, it triggers a ‘hazing’ device that spins a rod to                  
scrap a flexible material on its surface. According to the manufacturer, this is to train geese to                 
“​associate their behavior with the scary motion and sound produced​”. Where this product             
diverges from our project is that the ‘Goose Guardian’ does not patrol but is a stationary                
deterrence device. 

 

Bird Control Robots 

https://smprobotics.com/ 

This series of products are visually much more similar in design. They employ autonomous robots               
on wheels that use image recognition to detect birds and employ scare tactics to disperse them.                
They also follow guided routes when patrolling. The scare tactics described by the manufacturer              
depends on the model, but three listed on their website give the choice of lasers, a gas gun, and a                    
scare-call mimic. This product is essentially identical to our project. 
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Appendix I 
Appendix I consists of a manual detailing how to setup and operate the robot. 
 
Setup 

1. Power on ROMOSS (smaller white) power bank 
2. Power on TalentCell (larger black) power bank 
3. USB cable connection from laptop or computer to Beaglebone 
4. If user does not have Putty, install Putty 
5. Set IP address : 192.168.7.2, Port: 22 if not at default and open 
6. Login as: debian, password as: temppwd 
7. Command prompt: cd goose_chaperone/software 
8. Edit the GPS.csv file to populate with sequential GPS coordinates to create a guide route 

to follow (not implemented). 
 
Operation 

1. Flip the power switch to both batteries to the ‘On’ position 
2. The logic board will begin booting to Linux immediately. Once ready, the main robot logic 

program will be launched. 
3. While the program loads its dependencies, there are several LED signals that will flash on 

the board indicating its status. These are as follows: 
a. BOOT UP : This is the first signal that should flash as the program starts. It is 

indicated by six quick flashes. 
b. START: This indicates that the programs logic loop has started. This is indicated 

by ten very fast flashes, afterwards the light should remain lit. 
c. START FAILED: If this occurs following the boot sequence, then an exception has 

occurred and the program is about to exit. If this occurs, attempt powering down 
the Beaglebone, unplug it from the power supply, hold the reset button down for 
10 seconds, and then power it back on. This is indicated by five long flashes, and 
afterwards the indicated LED should turn off. 

d. TARGET DETECTED: This occurs when the robot detects a target, as reported 
from tensorflow. This is defined by a constant stream of very quick flashes while a 
target is in sight. Afterwards, the LED will remain lit. 

e. OBSTACLE DETECTED: Taking  precedence over the TARGET DETECTED signal, 
this will flash slowly while the ultrasonic sensor detects an obstacle nearby. 

f. SHUTDOWN: While shutting down (not currently implemented without 
powering down the beaglebone, but works while debugging) the indicator LED 
will flash slowly five times, and remain off afterwards.  

4. The robot will begin searching for targets to chase. 
5. To shut down, turn the power to the board and motors off by flipping their respective 

power switches on their batteries. 
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Appendix II 
Appendix II consists of discussion on design iterations prior to the final design. 
 
Initially, designs for the robot involved the use of a pre-built chassis. The team was partial to 
using a pre-built chassis over constructing our own from scratch. Using a pre-built would allow us 
to focus our time and effort on the more important details of the project, such as the image 
processing software. The chassis under consideration were made up of a frame, usually of 
aluminum, and DC motors with wheels. The frames had easy attachment points for the 
motors/wheels as well as any sensor that we needed mounted. 
 
There were several problems with these pre-built platforms. The first problem was the size of the 
chassis. Many of the pre-builts were designed for small, hobby robots that will operate indoors. 
The more robust platforms that could be utilized outdoors were harder to find, still had too small 
of a profile for our client, and cost a lot relative to our budget. This leads us to the second 
problem of cost. From our research, the smaller, robust platforms which can operate outdoors 
with a load of 15-20lbs were priced around $150-$200 at a minimum. To get the bigger profile that 
our client desired the cost would have gone up at least another several hundred dollars, 
consuming our entire budget for the project.  
 
Due to these problems, we concluded that the chassis for the robot must be built entirely from 
scratch to save money and get the size that the client desired. This was unfortunate because it 
meant the team must now designate a significant amount of time to the design and 
implementation of a chassis, something no team member had attempted before. 
 

Appendix III 
Appendix III consists of discussion on miscellaneous topics related to the project not mentioned 
above. 
 

Appendix IV 
Appendix IV consists of relevant examples from the project’s source code. 
 
Important API callables 
 
comvis.py 
get_detections() 
Parameters: None 
Return: A 2D array of lists detailing detected objects. Each element of the array (r) contains three values: 
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r[0] contains a class id, referenced by the mscoco_label_map.pbtxt file, in which filtered results currently 
allow ids 1 (humans) and 16 (birds). 
 
r[1] contains its confidence score as a floating point between 0 (no confidence) and 1 (total confidence). 
Currently, only scores 0.5 and above are returned. 
 
r[2]  is an array of four values representing bounding box corners. 
 
get_box_area(r[2]) 
Parameters: An array of bounding boxes from element r. 
Returns: A floating point that calculates the area (size) of the object detected on screen. 
Note: Does not currently give reliable results. 
 
 
distance_sensor.py 
init(trigger, echo) 
Parameters: 

Trigger: Integer referencing pin for ultra-sonic sensor trigger line (input) 
Echo: Integer referencing pin for ultra-sonic sensor echo line (output) 

Result: Initializes sensor 
 

detect_distance() 
Parameters: None 
Result: Distance from an object in range in meters. 
 
TB67H420FTG_motor_driver 
init(l_channel, l_select1, l_select2, r_channel, r_select1, r_select2) 
Parameters: 

l_channel: PWM pin controlling left DC motor's PWM signal 
l_select1: GPIO pin controlling direction of left DC motor 

 l_select2: GPIO pin controlling direction of left DC motor 
 r_channel: PWM pin controlling right DC motor's PWM signal 
 r_select1: GPIO pin controlling direction of right DC motor 
 r_select2: GPIO pin controlling direction of right DC motor 
Result: Initializes motor drivers 
 
set_speed(speed_setting, direction) 
Parameters: 

Speed_setting: Set motor speed 
Direction: 0 for forward, 1 for reverse 

Result: Set speed and direction 
 
brake() 
Parameters: None 
Result: Break all wheels 
 
turn(degree, direction) 
Parameters: 
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degree: Degrees to turn 
Direction: direction to turn (TurnDirectionEnum.LEFT or TurnDirectionEnum.Right) 

 
cleanup​() 
Parameters: 

None 
Result: 

Free resources 
 
 
uln2003_stepper 
rotate(degrees, rpm) 
Parameters: 

degrees: Degrees to turn 
rpm: Speed to turn 

Result: 
Rotate stepper motor by degree and speed 

 
 
Utility Programs 
 
ImageScraper 
Arguments: 

Query: Image query to search for 
StartPage: Google result page to skip to 
Count: Number of pages to search 

Result: 
Searches the internet and downloads into folders named after the query input. Limited to 100 

results per day. 
 
 
Example of the camera module using a singleton pattern: 
'''Module for controlling the capture device on the system''' 
# NOTE  'Frame' objects returned from VideoCapture.read() consist of 
#       a matrix of data representing the image. This matrix can be 
#       manipulated/analyzed with various OpenCV functions. 
import​ cv2 
 
_g_CAPTURE_DEVICE_INDEX = 0  ​# Only one camera on system so '0' index 
_g_INIT_FRAMES = 5  ​# Number of throwaway frames to initialize camera 
 
def​ init(cap_delay): 
    ​'''Creates handle and initializes capture capture device''' 
    ​global​ _g_vcap  ​# Handle for capture device 
    ​global​ _g_cap_delay_ms  ​# Delay between batch captures in ms 
    ​# Create the object for capturing frames 
    _g_vcap = cv2.VideoCapture(_g_CAPTURE_DEVICE_INDEX) 
    ​if​ ​not​ _g_vcap.isOpened():  
       ​raise​ RuntimeError(​'Unable to connect to camera.'​) 
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    _g_cap_delay_ms = cap_delay  
    ​# Set device properties here if necessary (i.e. frame width/height) 
    ​# Initialize device by capturing dummy frames 
    ​for​ i ​in​ ​range​(_g_INIT_FRAMES): 
        _g_vcap.read()  
        cv2.waitKey(_g_cap_delay_ms)  ​# Delay 
 
def​ release(): 
    ​'''Releases the handle on the capture device'''  
    _g_vcap.release() 
 
def​ single_capture(): 
    ​''' 
    Captures a single frame from the capture device 
    :returns: True if frame read correctly along with corresponding frame 
    ''' 
    ​return​ _g_vcap.read() 
 
def​ batch_capture(num): 
    ​''' 
    Captures a series of frames with fixed delay between each frame. If an 
    invalid frame is encountered in will be thrown away with no retry. 
    :param num: Maximum number of frames to capture 
    :returns: List of valid frames captured 
    ''' 
    frame_list = [] 
    ​if​ num: 
        ​for​ i ​in​ ​range​(num): 
            success, frame = single_capture() 
            ​if​ success: 
                frame_list.append(frame) 
            cv2.waitKey(_g_cap_delay_ms)  ​# Delay 
    ​return​ frame_list 
 
 
Example of DCMotor class using object oriented pattern: 
'''Driver for initializing/utilizing DC motor with TB67H420FTG motor driver''' 
import​ Adafruit_BBIO.GPIO ​as​ GPIO 
import​ Adafruit_BBIO.PWM ​as​ PWM 
 
_g_SPD_DIR_VALUES = [0, 1, None]    ​# Valid values for speed direction 
 
class​ DCMotor(​object​): 
    ​# PWM frequency in HZ 
    ​# Max PWM freq for TB67H420FTG Motor Driver = 100 kHz 
    _PWM_FREQ_HZ = 20000 
 
    ​def​ __init__(self, channel, select1, select2, dcycle_map): 
        ​''' 
        Initializes DC motor for PWM communication with specified pin 
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        :param channel: PWM pin controlling DC motor's PWM signal 
        :param select1: GPIO pin controlling motor direction 
        :param select2: GPIO pin controlling motor direction 
        :param dcycle_map: Mapping between speed setting and duty cycle 
        ''' 
        self.channel = channel 
        self.select1 = select1 
        self.select2 = select2 
        self.dcycle_map = dcycle_map 
        self.speed_setting = MotorSpeedEnum.STOP 
 
        ​# Configure PWM channel with initial duty cycle of 0 
        PWM.start(channel=self.channel, duty_cycle=0, frequency=DCMotor._PWM_FREQ_HZ) 
        ​# Configure GPIO pin controlling motor direction 
        GPIO.setup(self.select1, GPIO.OUT) 
        GPIO.setup(self.select2, GPIO.OUT) 
        ​# Initially set motor direction to forward 
        GPIO.output(self.select1, GPIO.HIGH) 
        GPIO.output(self.select2, GPIO.LOW) 
 
        ​print​(​'DC Motor Initialized - PWM: %s IN1: %s IN2: %s' 
              % (self.channel, self.select1, self.select2)) 
 
    ​def​ set_speed(self, speed_setting, direction=None): 
        ​''' 
        Sets the motor speed for the motor 
        :param speed_setting: Speed setting to set motor to 
        :param direction: Motor direction 
                          0 for forward, 1 for reverse, None for no change 
        ''' 
        ​# Ensure proper function usage (can be removed/refactored later) 
        ​assert​ (direction ​in​ _g_SPD_DIR_VALUES), ​'Invalid direction'​ \ 
                                                 ​' for motor speed' 
        ​# Get the appropriate duty cycle 
        dcycle = self.dcycle_map[speed_setting] 
        ​# Set direction if necessary 
        ​if​ direction ​is​ ​not​ None: 
            ​if​ direction == 0:  ​# Forward 
                GPIO.output(self.select1, GPIO.HIGH) 
                GPIO.output(self.select2, GPIO.LOW) 
            ​else​:  ​# Reverse 
                GPIO.output(self.select1, GPIO.LOW) 
                GPIO.output(self.select2, GPIO.HIGH) 
 
        ​# Perform speed change 
        PWM.set_duty_cycle(self.channel, dcycle) 
        ​# Track active speed setting 
        self.speed_setting = speed_setting 

SDDEC19-17​    15 



 

        ​print​(​'Set PWM \'%s\' duty cycle: %d%%'​ % (self.channel, dcycle)) 
 
    ​def​ brake(self): 
        ​'''Brakes the motor''' 
        GPIO.output(self.select1, GPIO.HIGH) 
        GPIO.output(self.select2, GPIO.HIGH) 
        PWM.set_duty_cycle(self.channel, 0) 
 
    ​def​ cleanup(self): 
        ​''' 
        Shuts down DC motor 
        ''' 
        PWM.stop(self.channel) 
        GPIO.output(self.select1, GPIO.LOW) 
        GPIO.output(self.select2, GPIO.LOW) 
        ​print​(​'DC Motor shutdown'​) 
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